Minggu, 15 Januari 2012

Definisi Kalor
Peristiwa yang melibatkan kalor sering kita jumpai dalam kehidupan sehari-hari. Misalnya, pada waktu memasak air dengan menggunakan kompor. Air yang semula dingin lama kelamaan menjadi panas. Mengapa air menjadi panas? Air menjadi panas karena mendapat kalor, kalor yang diberikan pada air mengakibatkan suhu air naik. Dari manakah kalor itu? Kalor berasal dari bahan bakar, dalam hal ini terjadi perubahan energi kimia yang terkandung dalam gas menjadi energi panas atau kalor yang dapat memanaskan air.

Sebelum abad ke-17, orang berpendapat bahwa kalor merupakan zat yang mengalir dari suatu benda yang suhunya lebih tinggi ke benda yang suhunya lebih rendah jika kedua benda tersebut bersentuhan atau bercampur. Jika kalor merupakan suatu zat tentunya akan memiliki massa dan ternyata benda yang dipanaskan massanya tidak bertambah. Kalor bukan zat tetapi kalor adalah suatu bentuk energi dan merupakan suatu besaran yang dilambangkan Q dengan satuan joule (J), sedang satuan lainnya adalah kalori (kal). Hubungan satuan joule dan kalori adalah:
1 kalori = 4,2 joule
1 joule = 0,24 kalori

Kalor dapat Mengubah Suhu Benda
Apa yang terjadi apabila dua zat cair yang berbeda suhunya dicampur menjadi satu? Bagaimana hubungan antara kalor terhadap perubahan suhu suatu zat? Adakah hubungan antara kalor yang diterima dan kalor yang dilepaskan oleh suatu zat? Semua benda dapat melepas dan menerima kalor. Benda-benda yang bersuhu lebih tinggi dari lingkungannya akan cenderung melepaskan kalor. Demikian juga sebaliknya benda-benda yang bersuhu lebih rendah dari lingkungannya akan cenderung menerima kalor untuk menstabilkan kondisi dengan lingkungan di sekitarnya. Suhu zat akan berubah ketika zat tersebut melepas atau menerima kalor. Dengan demikian, dapat diambil kesimpulan bahwa kalor dapat mengubah suhu suatu benda.

Kalor jenis suatu zat adalah banyaknya kalor yang yang diperlukan oleh suatu zat bermassa 1 kg untuk menaikkan suhu 1 °C. Sebagai contoh, kalor jenis air 4.200 J/kg °C, artinya kalor yang diperlukan untuk menaikkan suhu 1 kg air sebesar 1 °C adalah 4.200 J. Kalor jenis suatu zat dapat diukur dengan alat kalorimeter.

Tabel beberapa kalor jenis zat
Banyaknya kalor yang diperlukan untuk menaikkan atau menurunkan suhu suatu benda bergantung pada:
  • massa benda (m)
  • jenis benda / kalor jenis benda (c)
  • perubahan suhu (Δt )
Oleh karena itu, hubungan banyaknya kalor, massa zat, kalor jenis zat, dan perubahan suhu zat dapat dinyatakan dalam persamaan.

Keterangan:
Q = Banyaknya kalor yang diserap atau dilepaskan (joule)
m = Massa zat (kg)
c = Kalor jenis zat (joule/kg °C)
Δt = Perubahan suhu (°C)

Kalor dapat Mengubah Wujud Zat
Suatu zat apabila diberi kalor terus-menerus dan mencapai suhu maksimum, maka zat akan mengalami perubahan wujud. Peristiwa ini juga berlaku jika suatu zat melepaskan kalor terus-menerus dan mencapai suhu minimumnya. Oleh karena itu, selain kalor dapat digunakan untuk mengubah suhu zat, juga dapat digunakan untuk mengubah wujud zat. Perubahan wujud suatu zat akibat pengaruh kalor dapat digambarkan dalam skema berikut.

Keterangan:
1 = mencair/melebur
2 = membeku
3 = menguap
4 = mengembun
5 = menyublim
6 = mengkristal

Menguap (terjadi perubahan suhu)
Apakah pada waktu zat menguap memerlukan kalor? Dari manakah kalor itu diperoleh? pada waktu air dipanaskan akan tampak uap keluar dari permukaan air. Kenyataan ini menunjukkan bahwa pada waktu menguap zat memerlukan kalor. Jika air dipanaskan terus-menerus, lama-kelamaan air tersebut akan habis. Habisnya air akibat berubah wujud menjadi uap atau gas. Peristiwa ini disebut menguap, yaitu perubahan wujud dari cair ke gas, karena molekul-molekul zat cair bergerak meninggalkan permukaan zat cairnya. Pada peristiwa menguap terjadi perubahan suhu, oleh karena itu berlaku:

Sama halnya pada peristiwa membeku, melebur, dan mengembun.

Mendidih (tidak mengalami perubahan suhu, namun terjadi perubahan wujud)
Mendidih adalah peristiwa penguapan zat cair yang terjadi di seluruh bagian zat cair tersebut. Peristiwa ini dapat dilihat dengan munculnya gelembung-gelembung yang berisi uap air dan bergerak dari bawah ke atas dalam zat cair. Zat cair yang mendidih jika dipanaskan terus-menerus akan berubah menjadi uap. Banyaknya kalor yang diperlukan untuk mengubah 1 kg zat cair menjadi uap seluruhnya pada titik didihnya disebut kalor uap (U). Karena tidak terjadi perubahan suhu, maka besarnya kalor uap dapat dirumuskan:

Keterangan:
Q = kalor yang diserap/dilepaskan (joule)
m = massa zat (kg)
U = kalor uap (joule/kg)

Tabel beberapa kalor uap zat

Jika uap didinginkan akan berubah bentuk menjadi zat cair, yang disebut mengembun. Pada waktu mengembun zat melepaskan kalor, banyaknya kalor yang dilepaskan pada waktu mengembun sama dengan banyaknya kalor yang diperlukan waktu menguap dan suhu di mana zat mulai mengembun sama dengan suhu di mana zat mulai menguap.

Massa Jenis apaan sih?
Kamu tentu pernah minum air es atau es teh. Perhatikan, mengapa es batu selalu mengapung dalam air? Pernahkah kamu mencampur air dan minyak tanah? Mengapa minyak tanah selalu berada di atas air? Semua logam tenggelam di air, tetapi kayu atau gabus terapung di air. Apa yang menyebabkan semua ini? Untuk menemukan jawabannya kamu dapat melakukan percobaan berikut. Klik disini.

Dengan memperhatikan hasil kegiatan percobaan tadi, diskusikan kembali tentang permisalan dua kantong plastik ukuran sama yang diisi kapas dan pasir, ketika kamu membahas massa. Meskipun volumenya sama, yaitu satu kantong plastik, ternyata pasir memiliki massa yang lebih besar dibanding kapas. Berdasarkan hal ini, dikatakan massa jenis pasir lebih besar daripada massa jenis kapas. Massa jenis merupakan perbandingan antara massa dan volume.

Massa jenis benda sering disebut dengan kerapatan benda dan merupakan ciri khas setiap jenis benda. Massa jenis tidak tergantung pada jumlah benda. Apabila jenisnya sama maka nilai massa jenisnya juga sama. Misalnya, setetes air dan seember air mempunyai nilai massa jenis sama yaitu 1 gram/cm^3. Berbagai logam memiliki nilai massa jenis besar dikarenakan atom-atom dalam susunan molekulnya memiliki kerapatan yang besar. Gabus atau sterofoam mempunyai massa jenis kecil karena susunan atom-atom dalam molekulnya memiliki kerapatan kecil.

Massa jenis dilambangkan dengan simbol ρ (dibaca rho), salah satu huruf Yunani.
Keterangan:
ρ = massa jenis (kg/m^3 atau g/cm^3)
m = massa benda (kg atau gram)
V = volume benda m^3 atau cm^3)

Tabel berbagai massa jenis zat
Dari tabel tersebut dapat diketahui bahwa kerapatan logam tertentu seperti platina atau emas jauh lebih besar dibandingkan zat-zat lainnya. Massa jenis berbagai zat berbeda-beda walaupun benda-benda tersebut jumlah atau volumenya sama. Massa jenis zat yang umum digunakan sebagai patokan adalah massa jenis air dan massa jenis raksa. Massa jenis air dalam wujud cair, yaitu 1000 kg/m^3 atau 1 g/cm^3, sedangkan raksa atau mercury memiliki massa jenis 13.600 kg/m^3 atau 13,6 g/cm^3.

Penting: 1000 kg/m^3 = 1 g/cm^3

Selain massa jenis, dikenal pula berat jenis. Berat jenis adalah berat benda (w) tiap satuan volume (V). Bila berat jenis dapat dilambangkan dengan S, dapat dinyatakan dengan persamaan
Keterangan:
S = berat jenis (N/m^3 atau dyne/cm^3)
w = berat benda (N atau dyne)
V = volume benda (m^3 atau cm^3)

Jadi, berat jenis benda adalah hasil kali antara massa jenis dengan percepatan gravitasi.


Penggunaan Konsep Massa Jenis dalam Kehidupan Sehari-Hari


Kapal Selam
Tahukah kamu mengapa es dapat terapung di air, sedangkan batu tenggelam dalam air? Es memiliki massa jenis lebih kecil dari air, sehingga es dapat terapung dalam air. Batu tenggelam dalam air karena memiliki massa jenis lebih besar daripada air. Tahukah kamu mengapa kapal selam dapat terapung dan tenggelam di air? Ketika terapung massa jenis total kapal selam lebih kecil dari air laut dan sewaktu tenggelam massa jenis total kapal selam lebih besar dari air laut. Kapal selam memiliki tangki pemberat yang berisi air dan udara. Tangki tersebut terletak di antara lambung kapal sebelah dalam dan luar. Tangki dapat berfungsi membesar atau memperkecil massa jenis total kapal selam. Ketika air laut dipompa masuk ke dalam tangki pemberat, massa jenis kapal selam lebih besar dan sebaliknya agar massa jenis total kapal selam menjadi kecil, air laut dipompa keluar.

Balon Gas
Pernahkah kamu melihat balon udara? Tahukah kamu, gas apa yang terdapat di dalamnya? Balon gas berisi gas helium. Gas helium memiliki massa jenis yang lebih kecil dari udara, sehingga balon gas bisa naik ke atas.

Air Minum Dingin di Dalam Lemari Es
Suatu ketika kamu mungkin pernah melihat dalam botol air minum dingin yang berasal dari lemari es terdapat endapan kapur. Kenapa hal itu dapat terjadi? Air yang jernih dapat juga mengandung kapur, namun apabila dilihat langsung dengan mata tidak kelihatan. Ketika air dingin massa jenis air lebih kecil dan terpisah dari kapur sehingga kapur yang memiliki massa jenis lebih besar akan turun ke bawah dan mengendap.

Menganalisis Benda Terapung, Melayang, Dan Tenggelam
Dengan membandingkan massa jenis zat cair dan benda yang dicelupkan kedalamnya, kamu dapat mengetahui benda-benda tersebut terapung melayang, atau tenggelam.
Adhesi dan Kohesi
Hal lain yang dapat kita ketahui adalah adanya tarik-menarik antar partikel. Gaya tarik-menarik antarpartikel dapat terjadi antara partikel-partikel yang sejenis dan antara partikel-partikel yang tidak sejenis. Setetes air yang jatuh di kaca meja akan berbeda bentuknya bila dijatuhkan pada sehelai daun talas. Mengapa demikian?

Antara molekul-molekul air terjadi gaya tarik-menarik yang disebut dengan gaya kohesi molekul air. Gaya kohesi diartikan sebagai gaya tarik menarik antara partikel-partikel zat yang sejenis. Pada saat air bersentuhan dengan benda lain maka molekul molekul bagian luarnya akan tarik-menarik dengan molekul-molekul luar benda lain tersebut. Gaya tarik-menarik antara partikel zat yang tidak sejenis disebut gaya adhesi. Gaya adhesi antara molekul air dengan molekul kaca berbeda dibandingkan gaya adhesi antara molekul air dengan molekul daun talas. Demikian pula gaya kohesi antar molekul air lebih kecil daripada gaya adhesi antara molekul air dengan molekul kaca. Itulah sebabnya air membasahi kaca dan berbentuk melebar. Namun air tidak membasahi daun talas dan tetes air berbentuk bulat-bulat menggelinding di permukaan karena gaya kohesi antarmolekul air lebih besar daripada gaya adhesi antara molekul air dan molekul daun talas.
  1. Gaya adhesi adalah gaya tarik-menarik dua partikel atau lebih dari partikel yang tidak sejenis. Mengakibatkan sebuah zat dapat menempel pada zat yang lain. Contoh: Air dapat menempel di kaca.
  2. Gaya kohesi adalah gaya tarik menarik dua partikel atau lebih dari partikel yang sejenis. Mengakibatkan sebuah zat tidak dapat menempel pada zat yang lain. Contoh: Air tidak dapat menempel pada daun talas.

Meniskus

Gaya kohesi maupun gaya adhesi juga mempengaruhi bentuk permukaan zat cair dalam wadahnya. Misalkan ke dalam dua buah tabung reaksi masing-masing diisikan air dan raksa. Apa yang terjadi? Permukaan air dalam tabung reaksi berbentuk cekung disebut meniskus cekung, sedangkan permukaan raksa dalam tabung reaksi berbentuk cembung disebut meniskus cembung.

Hal itu dapat dijelaskan bahwa gaya adhesi molekul air dengan molekul kaca lebih besar daripada gaya kohesi antar molekul air, sedangkan gaya adhesi molekul raksa dengan molekul kaca lebih kecil daripada gaya kohesi antara molekul raksa. Meniskus cembung maupun meniskus cekung menyebabkan sudut kontak antara bidang wadah (tabung) dengan permukaan zat cair berbeda besarnya. Meniskus cembung menimbulkan sudut kontak tumpul (> 90^o), sedangkan meniskus cekung menimbulkan sudut kontak lancip (< 90^o)


Kapilaritas

Gaya kohesi dan gaya adhesi berpengaruh pada gejala kapilaritas. Kapilaritas adalah gejala naik atau turunnya cairan di dalam pipa kapiler atau pipa kecil. Sebuah pipa kapiler kaca bila dicelupkan pada tabung berisi air akan dijumpai air dapat naik ke dalam pembuluh kaca pipa kapiler, sebaliknya bila pembuluh pipa kapiler dicelupkan pada tabung berisi air raksa akan dijumpai bahwa raksa di dalam pembuluh kaca pipa kapiler lebih rendah permukaannya dibandingkan permukaan raksa dalam tabung.

Jadi, kapilaritas sangat tergantung pada kohesi dan adhesi. Air naik dalam pembuluh pipa kapiler dikarenakan adhesi sedangkan raksa turun dalam pembuluh pipa kapiler dikarenakan kohesi. Sekarang banyak dikembangkan teknologi yang mendasarkan pada gaya adhesi maupun kohesi. Beberapa tekstil kain tiruan menghasilkan kain yang kohesif terhadap debu. Jadi, pakaian dari bahan tersebut tidak mudah kotor. Di lain pihak, banyak ditemukan bahan-bahan adhesif serbaguna, lem alteco, dan sejenisnya sangat berguna bagi kehidupan. Bahkan, luka bekas operasi sekarang tidak perlu dijahit melainkan cukup dilem dengan lem khusus yang adhesif dengan jaringan kulit dan otot. Beberapa contoh gejala kapilaritas yang berkaitan dengan peristiwa alam yaitu:
  1. peristiwa naiknya air dari ujung akar ke daun pada tumbuhan
  2. naiknya minyak tanah pada sumbu kompor
  3. basahnya tembok rumah bagian dalam ketika hujan. Ketika terkena hujan, tembok bagian luar akan basah, kemudian merembes ke bagian yang lebih dalam.
Wujud Zat
Banyak benda yang dapat dilihat dan dijumpai di kehidupan sehari-hari. Misalnya pensil, kacamata, batu, kursi, air, balon berisi udara, tabung LPG berisi gas, es, baja, dan daun. Berbagai macam benda yang kita jumpai memiliki kesamaan, yaitu benda-benda tersebut memerlukan ruang atau tempat untuk keberadaannya. Air di dalam gelas, menempati ruang bagian dalam gelas itu, batu di pinggir jalan menempati ruang di pinggir jalan di mana ruangan itu tidak ditempati oleh benda lain sebelum batu itu disingkirkan.

Udara dalam balon menempati ruang bagian dalam balon itu. Manusia juga menempati ruang, misalkan dalam lift hanya cukup ditempati paling banyak 10 orang dewasa, lebih dari itu ruang dalam lift tidak mencukupi lagi. Benda atau zat juga memiliki massa, sebagai contoh batu bila ditimbang dengan neraca menunjukkan nilai massa tertentu. Balon berisi udara bila dibandingkan massanya dengan balon yang kempis, akan lebih berat balon berisi udara. Hal itu menunjukkan bahwa udara memiliki massa. Dapat disimpulkan bahwa zat adalah sesuatu yang memiliki massa dan menempati ruangan. Menurut wujudnya zat digolongkan menjadi tiga yaitu

Zat Padat
Ciri zat padat yaitu bentuk dan volumenya tetap. Contohnya kelereng yang berbentuknya bulat, dipindahkan ke gelas akan tetap berbentuk bulat. Begitu pula dengan volumenya. Volume kelereng akan selalu tetap walaupun berpindah tempat ke dalam gelas. Hal ini disebabkan karena daya tarik antarpartikel zat padat sangat kuat. Pada umumnya zat padat berbentuk kristal (seperti gula pasir atau garam dapur) atau amorf (seperti kaca dan batu granit). Partikel zat padat memiliki sifat seperti berikut:
  1. Letaknya sangat berdekatan
  2. Susunannya teratur
  3. Gerakannya tidak bebas, hanya bergetar dan berputar di tempatnya

Zat Cair
Zat cair memiliki volume tetap tetapi bentuk berubah-ubah sesuai dengan yang ditempatinya. Apabila air dimasukkan ke dalam gelas, maka bentuknya seperti gelas, apabila dimasukkan ke dalam botol akan seperti botol. Tetapi volumenya selalu tetap. Hal ini disebabkan partikel-partikel penyusunnya agak berjauhan satu sama lain. Selain itu, partikelnya lebih bebas bergerak karena ikatan antar partikelnya lemah. Partikel zat cair memiliki sifat seperti berikut:
  1. Letaknya berdekatan
  2. Susunannya tidak teratur
  3. Gerakannya agak bebas, sehingga dapat bergeser dari tempatnya, tetapi tidak lepas dari kelompoknya

Zat Gas
Ciri dari gas di antaranya bentuk dan volume berubah sesuai dengan tempatnya. Gas yang terdapat di balon memiliki bentuk dan volume yang sama dengan balon. Gas yang terdapat di dalam botol, bentuk dan volumenya sama dengan botol. Partikel-partikel gas bergerak acak ke segala arah dengan kecepatan bergantung pada suhu gas, akibatnya volumenya selalu berubah. Partikel zat gas memiliki sifat seperti berikut:
  1. Letaknya sangat berjauhan
  2. Susunannya tidak teratur
  3. Gerakannya bebas bergerak, sehingga dapat bergeser dari tempatnya dan lepas dari kelompoknya, sehingga dapat memenuhi ruangan


Perubahan Wujud Zat
Setiap zat akan berubah apabila menerima panas (kalor). Es dipanaskan akan mencair. Air dipanaskan akan menguap menjadi uap air (gas). Apabila uap air didinginkan menjadi embun dan kembali menjadi air. Air didinginkan menjadi es. Proses perubahan wujud zat tersebut dapat diamati pada diagram.
Berdasarkan diagram tersebut, zat dari wujud yang satu ke wujud yang lainnya dapat dijelaskan sebagai berikut.
  1. Membeku yaitu perubahan wujud zat dari cair ke padat
  2. Mencair atau melebur yaitu perubahan wujud zat dari padat ke cair
  3. Menyublim (mengkristal) yaitu perubahan wujud zat dari gas ke padat
  4. Menyublim yaitu perubahan wujud zat dari padat ke gas
  5. Menguap yaitu perubahan wujud zat dari cair ke gas
  6. Mengembun yaitu perubahan wujud zat dari gas ke cair


Latihan Yuk!!
  1. Pada saat cuaca mendung dan hampir turun hujan, mengapa kita sering merasa gerah dan kepanasan?
  2. Apabila es dalam ruang tertutup dipanaskan terus menerus akan mengalami perubahan wujud menjadi air dan kemudian menjadi uap air. Apa yang terjadi pada uap air itu bila pemanasan dilakukan terus tiada henti? Tingkatan wujud apakah sesudah wujud gas?Jelaskan keadaan partikel-partikelnya!
  3. Berdasarkan skema perubahan wujud zat, sebutkan perubahan wujud apa saja yang memerlukan panas dan yang melepaskan panas?

Sabtu, 14 Januari 2012

kelas 7



pengukuran panjang, massa, dan waktu

Peranan pengukuran dalam kehidupan sehari-hari sangat penting. Seorang tukang jahit pakaian mengukur panjang kain untuk dipotong sesuai dengan pola pakaian yang akan dibuat dengan menggunakan meteran pita. Penjual daging menimbang massa daging sesuai kebutuhan pembelinya dengan menggunakan timbangan duduk. Seorang petani tradisional mungkin melakukan pengukuran panjang dan lebar sawahnya menggunakan satuan bata, dan tentunya alat ukur yang digunakan adalah sebuah batu bata. Tetapi seorang sarjana mengukur lebar jalan menggunakan alat meteran kelos untuk mendapatkan satuan meter.

1. Pengukuran Besaran Panjang
Alat ukur yang digunakan untuk mengukur panjang benda haruslah sesuai dengan ukuran benda. Sebagai contoh, untuk mengukur lebar buku kita gunakan pengaris, sedangkan untuk mengukur lebar jalan raya lebih mudah menggunakan meteran kelos.

a. Pengukuran Panjang dengan Mistar
Penggaris atau mistar berbagai macam jenisnya, seperti penggaris yang berbentuk lurus, berbentuk segitiga yang terbuat dari plastik atau logam, mistar tukang kayu, dan penggaris berbentuk pita (meteran pita). Mistar mempunyai batas ukur sampai 1 meter, sedangkan meteran pita dapat mengukur panjang sampai 3 meter. Mistar memiliki ketelitian 1 mm atau 0,1 cm. Posisi mata harus melihat tegak lurus terhadap skala ketika membaca skala mistar. Hal ini untuk menghindari kesalahan pembacaan hasil pengukuran akibat beda sudut kemiringan dalam melihat atau disebut dengan kesalahan paralaks.


b. Pengukuran Panjang dengan Jangka Sorong

Bagaimanakah mengukur kedalaman suatu tutup pulpen? Untuk mengukur kedalaman tutup pulpen dapat kita gunakan jangka sorong. Jangka sorong merupakan alat ukur panjang yang mempunyai batas ukur sampai 10 cm dengan ketelitiannya 0,1 mm atau 0,01 cm. Jangka sorong juga dapat digunakan untuk mengukur diameter cincin dan diameter bagian dalam sebuah pipa. Bagian-bagian penting jangka sorong yaitu:
1. rahang tetap dengan skala tetap terkecil 0,1 cm
2. rahang geser yang dilengkapi skala nonius. Skala tetap dan nonius mempunyai selisih 1 mm.

Menggunakan Jangka Sorong


  1. Langkah pertama. Tentukan terlebih dahulu skala utama. Pada gambar terlihat skala nol nonius terletak di antara skala 2,4 cm dan 2,5 cm pada skala tetap. Jadi, skala tetap bernilai 2,4 cm.
  2. Langkah kedua. Menentukan skala nonius. Skala nonius yang berimpit dengan skala tetap adalah angka 7. Jadi, skala nonius bernilai 7 x 0,01 cm = 0,07 cm.
  3. Langkah ketiga. Menjumlahkan skala tetap dan skala nonius. Hasil pengukuran = 2,4 cm + 0,07 cm = 2,47 cm. Jadi, hasil pengukuran diameter baut sebesar 2,47 cm.

c. Pengukuran Panjang dengan Mikrometer Sekrup

Tahukah kamu alat ukur apa yang dapat digunakan untuk mengukur benda berukuran kurang dari dua centimeter secara lebih teliti? Mikrometer sekrup memiliki ketelitian 0,01 mm atau 0,001 cm. Mikrometer sekrup dapat digunakan untuk mengukur benda yang mempunyai ukuran kecil dan tipis, seperti mengukur ketebalan plat, diameter kawat, dan onderdil kendaraan yang berukuran kecil. Bagian-bagian dari mikrometer adalah rahang putar, skala utama, skala putar, dan silinder bergerigi. Skala terkecil dari skala utama bernilai 0,1 mm, sedangkan skala terkecil untuk skala putar sebesar 0,01 mm.

Menggunakan Mikrometer Sekrup


  1. Langkah pertama. Menentukan skala utama, terlihat pada gambar skala utamanya adalah 1,5 mm.
  2. Langkah kedua. Perhatikan pada skala putar, garis yang sejajar dengan skala utamanya adalah angka 29. Jadi, skala nonius sebesar 29 x 0,01 mm = 0,29 mm.
  3. Langkah ketiga. Menjumlahkan skala utama dan skala putar. Hasil pengukuran = 1,5 mm + 0,29 mm = 1,79 mm. Jadi hasil pengukuran diameter kawat adalah 1,79 mm.
Jika sahabat ingin mencoba simulasi menggunakan jangka sorong dan mikrometer sekrup dapat klik disini.


2. Pengukuran Besaran Massa
Pernahkah kamu pergi ke pasar? Ketika di pasar kamu mungkin akan melihat berbagai macam alat ukur timbangan seperti dacin, timbangan pasar, timbangan emas, bahkan mungkin timbangan atau neraca digital. Timbangan tersebut digunakan untuk mengukur massa benda. Prinsip kerjanya adalah keseimbangan kedua lengan, yaitu keseimbangan antara massa benda yang diukur dengan anak timbangan yang digunakan. Dalam dunia pendidikan sering digunakan neraca O’Hauss tiga lengan atau dua lengan.

Menggunakan Neraca O’Hauss
Sekantong plastik terigu ditimbang dengan neraca O’Hauss tiga lengan. Posisi lengan depan, tengah, dan belakang dalam keadaan setimbang ditunjukkan pada gambar berikut ini.


Dari gambar dapat diketahui bahwa:
  • posisi anting depan 5,5 gram
  • posisi anting tengah 20,0 gram
  • posisi anting belakang 200,0 gram
Jadi, massa terigu adalah 225,5 gram


3. Pengukuran Besaran Waktu

Ketika bepergian kita tidak lupa membawa jam tangan. Jam tersebut kita gunakan untuk menentukan waktu dan lama perjalanan yang sudah ditempuh. Berbagai jenis alat ukur waktu yang lain, misalnya: jam analog, jam digital, jam dinding, jam atom, jam matahari, dan stopwatch. Dari alat-alat tersebut, stopwatch termasuk alat ukur yang memiliki ketelitian cukup baik, yaitu sampai 0,1 s.
Besaran pokok dan turunan
Berapakah tinggi dan berat badanmu? Tentu saja kamu dapat mengukur secara langsung tinggi badanmu dengan alat ukur meteran pita, misalnya 165 cm. Bagaimana dengan berat badanmu? Di dalam pembicaraan kita sehari-hari yang dimaksud dengan berat badan adalah massa, sedangkan dalam Fisika pengertian berat dan massa berbeda. Berat badan dapat kita tentukan dengan menggunakan alat timbangan berat badan. Misalnya, setelah ditimbang berat badanmu 50 kg atau dalam Fisika bermassa 50 kg. Tinggi atau panjang dan massa adalah sesuatu yang dapat kita ukur dan dapat kita nyatakan dengan angka dan satuan. Panjang dan massa merupakan besaran Fisika. Jadi, besaran Fisika adalah ukuran fisis suatu benda yang dinyatakan secara kuantitas.

Besaran Pokok dan Besaran Turunan
Besaran Fisika dikelompokkan menjadi dua, yaitu besaran pokok dan besaran turunan. Besaran pokok adalah besaran yang sudah ditetapkan terlebih dahulu. Adapun, besaran turunan merupakan besaran yang dijabarkan dari besaran-besaran pokok. Sistem satuan besaran Fisika pada prinsipnya bersifat standar atau baku, yaitu bersifat tetap, berlaku universal, dan mudah digunakan setiap saat dengan tepat. Sistem satuan standar ditetapkan pada tahun 1960 melalui pertemuan para ilmuwan di Sevres, Paris. Sistem satuan yang digunakan dalam dunia pendidikan dan pengetahuan dinamakan sistem metrik, yang dikelompokkan menjadi sistem metrik besar atau MKS (Meter Kilogram Second) yang disebut sistem internasional atau disingkat SI dan sistem metrik kecil atau CGS (Centimeter Gram Second). Besaran pokok dan besaran turunan beserta dengan satuannya dapat dilihat dalam Tabel berikut.

Besaran Pokok
Selain tujuh besaran pokok di atas, terdapat dua besaran pokok tambahan, yaitu sudut bidang datar dengan satuan radian (rad) dan sudut ruang dengan satuan steradian (sr).

Besaran Turunan


Konversi Satuan
Di samping satuan sistem metrik, juga dikenal satuan lainnya yang sering dipakai dalam kehidupan sehari-hari, misalnya liter, inci, yard, feet, mil, ton, dan ons. Satuan-satuan tersebut dapat dikonversi atau diubah ke dalam satuan sistem metrik dengan patokan yang ditentukan. Konversi besaran panjang menggunakan acuan sebagai berikut:
  • 1 mil = 1760 yard (1 yard adalah jarak pundak sampai ujung jari tangan orang dewasa).
  • 1 yard = 3 feet (1 feet adalah jarak tumit sampai ujung jari kaki orang dewasa).
  • 1 feet = 12 inci (1 inci adalah lebar maksimal ibu jari tangan orang dewasa).
  • 1 inci = 2,54 cm
  • 1 cm = 0,01 m
Satuan mil, yard, feet, inci tersebut dinamakan satuan sistem Inggris. Untuk besaran massa berlaku juga sistem konversi dari satuan sehari-hari maupun sistem Inggris ke dalam sistem SI. Contohnya sebagai berikut.
  • 1 ton = 1000 kg
  • 1 ons (oz) = 0,02835 kg
  • 1 kuintal = 100 kg
  • 1 pon (lb) = 0,4536 kg
  • 1 slug = 14,59 kg
Satuan waktu dalam kehidupan sehari-hari dapat dikonversi ke dalam sistem SI yaitu detik atau sekon. Contohnya sebagai berikut.
  • 1 tahun = 3,156 x 10^7 detik
  • 1 jam = 3600 detik
  • 1 hari = 8,640 x 10^4 detik
  • 1 menit = 60 detik
Besaran turunan memiliki satuan yang dijabarkan dari satuan besaran-besaran pokok yang mendefinisikan besaran turunan tersebut. Oleh karena itu, seringkali dijumpai satuan besaran turunan dapat berkembang lebih dari satu macam karena penjabarannya dari definisi yang berbeda. Sebagai contoh, satuan percepatan dapat ditulis dengan m/s^2 dapat juga ditulis dengan N/kg. Satuan besaran turunan dapat juga dikonversi. Perhatikan beberapa contoh di bawah ini!
  • 1 dyne = 10^-5 newton
  • 1 erg = 10^-7 joule
  • 1 kalori = 0,24 joule
  • 1 kWh = 3,6 x 10^6 joule
  • 1 liter = 10^-3 m^3 = 1 dm^3
  • 1 ml = 1 cm^3 = 1 cc
  • 1 atm = 1,013 x 10^5 pascal
  • 1 gauss = 10^-4 tesla